Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.975
Filtrar
1.
J Biomed Opt ; 29(4): 046004, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38690122

RESUMEN

Significance: Assessing the nanostructure of polymer solutions and biofluids is broadly useful for understanding drug delivery and disease progression and for monitoring therapy. Aim: Our objective is to quantify bronchial mucus solids concentration (wt. %) during hypertonic saline (HTS) treatment in vitro via nanostructurally constrained diffusion of gold nanorods (GNRs) monitored by polarization-sensitive optical coherence tomography (PS-OCT). Approach: Using PS-OCT, we quantified GNR translational (DT) and rotational (DR) diffusion coefficients within polyethylene oxide solutions (0 to 3 wt. %) and human bronchial epithelial cell (hBEC) mucus (0 to 6.4 wt. %). Interpolation of DT and DR data is used to develop an assay to quantify mucus concentration. The assay is demonstrated on the mucus layer of an air-liquid interface hBEC culture during HTS treatment. Results: In polymer solutions and mucus, DT and DR monotonically decrease with increasing concentration. DR is more sensitive than DT to changes above 1.5 wt. % of mucus and exhibits less intrasample variability. Mucus on HTS-treated hBEC cultures exhibits dynamic mixing from cilia. A region of hard-packed mucus is revealed by DR measurements. Conclusions: The extended dynamic range afforded by simultaneous measurement of DT and DR of GNRs using PS-OCT enables resolving concentration of the bronchial mucus layer over a range from healthy to disease in depth and time during HTS treatment in vitro.


Asunto(s)
Oro , Moco , Nanotubos , Tomografía de Coherencia Óptica , Tomografía de Coherencia Óptica/métodos , Humanos , Nanotubos/química , Oro/química , Moco/química , Moco/metabolismo , Difusión , Bronquios/diagnóstico por imagen , Células Epiteliales/química , Células Epiteliales/metabolismo , Solución Salina Hipertónica/farmacología , Solución Salina Hipertónica/química , Células Cultivadas
2.
Anal Chim Acta ; 1306: 342585, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692786

RESUMEN

Herein, we developed a convenient and versatile dual-mode electrochemiluminescence (ECL) and photoelectrochemistry (PEC) sensing radar for the detection of Prostate-specific antigen (PSA), which has important implications for detection of low-abundance disease-associated proteins. Cerium-based metal-organic framework (Ce-MOFs) were firstly modified on the electrode, showing well ECL and PEC property. In particular, a unique multifunctional Au@CdS quantum dots (QDs) probe loaded numerous QDs and antibody was fabricated, not only displaying strong ECL and PEC signals, but also having specific recognition to PSA. After the signal probe was linked to the electrode by immune reaction, much amplified signals of ECL and PEC were generated for double-mode detection of PSA. Therefore, this work proposed a multifunctional Au@CdS QDs signal probe with excellent ECL and PEC performance, and developed an ultrasensitive photoelectric biosensing platform for dual-mode detection, which provides an effective method for health monitoring of cancer patients.


Asunto(s)
Compuestos de Cadmio , Técnicas Electroquímicas , Estructuras Metalorgánicas , Antígeno Prostático Específico , Puntos Cuánticos , Sulfuros , Puntos Cuánticos/química , Compuestos de Cadmio/química , Sulfuros/química , Humanos , Antígeno Prostático Específico/análisis , Antígeno Prostático Específico/sangre , Estructuras Metalorgánicas/química , Oro/química , Cerio/química , Técnicas Biosensibles , Procesos Fotoquímicos , Límite de Detección , Electrodos , Mediciones Luminiscentes
3.
Anal Chim Acta ; 1306: 342617, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692789

RESUMEN

BACKGROUND: Alpha-fetoprotein (AFP) is a fetal protein that can indicate congenital anomalies such as Down syndrome and spinal canal blockage when detected at abnormal levels in pregnant women. Current AFP detection methods rely on invasive blood or serum samples, which require sophisticated equipment. From the many solutions proposed, colorimetric paper-based assays excel in point-of-care settings. The concept of paper-based ELISA (p-ELISA) enhances traditional methods, aligning with the ASSURED criteria for diagnostics in resource-limited regions. Despite success in microfluidic paper-based assay devices, laser printing remains underexplored for p-ELISA. Additionally, modifying the paper surface provides an additional layer of sensitivity enhancement. RESULTS: In this study, we developed a novel laser-printed paper-based ELISA (LP-pELISA) for rapid, sensitive, and noninvasive detection of AFP in saliva samples. The LP-pELISA platform was fabricated by printing hydrophobic barriers on filter paper using a laser printer, followed by depositing hydroxyapatite (HAp) as an immobilization material for the antibodies. The colorimetric detection was achieved using AuNPs functionalized with anti-AFP antibodies and silver nitrate enhancement. The LP-pELISA exhibited a linear response for AFP detection in both buffer and saliva samples over a range of 1.0-800 ng mL-1, with a limit of detection (LOD) reaching 1.0 ng mL-1. The assay also demonstrated good selectivity, repeatability, reproducibility, and stability. The LP-pELISA was further validated by testing spiked human saliva samples, showing its potential for point-of-care diagnosis of congenital disabilities. SIGNIFICANCE: The LP-pELISA is a noninvasive platform showcasing simplicity, cost-effectiveness, and user-friendliness, utilizing laser printing, hydroxyapatite modification, and saliva samples to efficiently detect AFP. Beyond its application for AFP, this method's versatility extends to other biomarkers, positioning it as a catalyst for the evolution of paper-based biosensors. The LP-pELISA holds promise as a transformative tool for point-of-care diagnostics, fostering advancements in healthcare with its innovative technology.


Asunto(s)
Colorimetría , Durapatita , Ensayo de Inmunoadsorción Enzimática , Rayos Láser , Papel , Saliva , alfa-Fetoproteínas , Humanos , Saliva/química , Durapatita/química , alfa-Fetoproteínas/análisis , Impresión , Oro/química , Límite de Detección , Anticuerpos Inmovilizados/inmunología , Anticuerpos Inmovilizados/química
4.
Anal Chim Acta ; 1306: 342613, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692794

RESUMEN

Glucose detection is of significant importance in providing information to the human health management. However, conventional enzymatic glucose sensors suffer from a limited long-term stability due to the losing activity of the enzymes. In this work, the AuNi bimetallic aerogel with a well-defined nanowire network is synthesized and applied as the sensing nanomaterial in the non-enzymatic glucose detection. The three-dimensional (3D) hierarchical porous structure of the AuNi bimetallic aerogel ensures the high sensitivity of the sensor (40.34 µA mM-1 cm-2). Theoretical investigation unveiled the mechanism of the boosting electrocatalytic activity of the AuNi bimetallic aerogel toward glucose. A better adhesion between the sensing nanomaterial and the screen-printing electrodes (SPEs) is obtained after the introduction of Ni. On the basis of a wide linearity in the range of 0.1-5 mM, an excellent selectivity, an outstanding long-term stability (90 days) as well as the help of the signal processing circuit and an M5stack development board, the as-prepared glucose sensor successfully realizes remote monitoring of the glucose concentration. We speculate that this work is favorable to motivating the technological innovations of the non-enzymatic glucose sensors and intelligent sensing devices.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Geles , Glucosa , Oro , Níquel , Técnicas Biosensibles/métodos , Níquel/química , Geles/química , Oro/química , Glucosa/análisis , Electrodos , Nanocables/química , Humanos , Límite de Detección
5.
Artif Cells Nanomed Biotechnol ; 52(1): 270-277, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38696132

RESUMEN

Spherical gold/polyacrylic acid (Au/PAA) polymer-inorganic Janus nanoparticles (JNPs) with simultaneous therapeutic and targeting functions were fabricated. The obtained Au/PAA JNPs were further selectively functionalized with folic acid (FA) and thiol PEG amine (SH-PEG-NH2) on Au sides to provide superior biocompatibility and active targeting, while the other PAA sides were loaded with 5-aminolevulinic acid (5-ALA) to serve as a photosensitizer (PS) for photodynamic therapeutic (PDT) effects on MCF-7 cancer cells. The PS loading of 5-ALA was found to be 83% with an average hydrodynamic size and z-potential of 146 ± 0.8 nm and -6.40 mV respectively for FA-Au/PAA-ALA JNPs. The in vitro PDT study of the JNPs on MCF-7 breast cancer cells under 636 nm laser irradiation indicated the cell viability of 24.7% ± 0.5 for FA-Au/PAA-ALA JNPs at the IC50 value of 0.125 mM. In this regard, the actively targeted FA-Au/PAA-ALA JNPs treatment holds great potential for tumour therapy with high cancer cell-killing efficacy.


Asunto(s)
Ácido Aminolevulínico , Neoplasias de la Mama , Oro , Fotoquimioterapia , Fármacos Fotosensibilizantes , Humanos , Células MCF-7 , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Ácido Aminolevulínico/química , Ácido Aminolevulínico/farmacología , Oro/química , Oro/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Nanopartículas/química , Resinas Acrílicas/química , Femenino , Ácido Fólico/química , Supervivencia Celular/efectos de los fármacos
6.
Sensors (Basel) ; 24(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38733043

RESUMEN

In this paper, a novel aptamer-modified nitrogen-doped graphene microelectrode (Apt-Au-N-RGOF) was fabricated and used to specifically identify and detect dopamine (DA). During the synthetic process, gold nanoparticles were loaded onto the active sites of nitrogen-doped graphene fibers. Then, aptamers were modified on the microelectrode depending on Au-S bonds to prepare Apt-Au-N-RGOF. The prepared microelectrode can specifically identify DA, avoiding interference with other molecules and improving its selectivity. Compared with the N-RGOF microelectrode, the Apt-Au-N-RGOF microelectrode exhibited higher sensitivity, a lower detection limit (0.5 µM), and a wider linear range (1~100 µM) and could be applied in electrochemical analysis fields.


Asunto(s)
Aptámeros de Nucleótidos , Dopamina , Técnicas Electroquímicas , Oro , Grafito , Nanopartículas del Metal , Microelectrodos , Grafito/química , Dopamina/análisis , Dopamina/química , Aptámeros de Nucleótidos/química , Oro/química , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química , Técnicas Biosensibles/métodos , Límite de Detección , Nitrógeno/química
7.
Mikrochim Acta ; 191(5): 293, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691169

RESUMEN

To address the need for facile, rapid detection of pathogens in water supplies, a fluorescent sensing array platform based on antibiotic-stabilized metal nanoclusters was developed for the multiplex detection of pathogens. Using five common antibiotics, eight different nanoclusters (NCs) were synthesized including ampicillin stabilized copper NCs, cefepime stabilized gold and copper NCs, kanamycin stabilized gold and copper NCs, lysozyme stabilized gold NCs, and vancomycin stabilized gold/silver and copper NCs. Based on the different interaction of each NC with the bacteria strains, unique patterns were generated. Various machine learning algorithms were employed for pattern discernment, among which the artificial neural networks proved to have the highest performance, with an accuracy of 100%. The developed prediction model performed well on an independent test dataset and on real samples gathered from drinking water, tap water and the Anzali Lagoon water, with prediction accuracy of 96.88% and 95.14%, respectively. This work demonstrates how generic antibiotics can be implemented for NC synthesis and used as recognition elements for pathogen detection. Furthermore, it displays how merging machine learning techniques can elevate sensitivity of analytical devices.


Asunto(s)
Antibacterianos , Cobre , Oro , Nanopartículas del Metal , Plata , Nanopartículas del Metal/química , Antibacterianos/análisis , Antibacterianos/química , Oro/química , Cobre/química , Plata/química , Agua Potable/microbiología , Agua Potable/análisis , Redes Neurales de la Computación , Espectrometría de Fluorescencia/métodos , Aprendizaje Automático , Bacterias/aislamiento & purificación , Colorantes Fluorescentes/química , Vancomicina/química , Microbiología del Agua , Kanamicina/análisis
8.
Mikrochim Acta ; 191(5): 294, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698253

RESUMEN

Early transition metal carbides (MXene) hybridized by precious metals open a door for innovative electrochemical biosensing device design. Herein, we present a facile one-pot synthesis of gold nanoparticles (AuNPs)-doped two-dimensional (2D) titanium carbide MXene nanoflakes (Ti3C2Tx/Au). Ti3C2Tx MXene exhibits high electrical conductivity and yields synergistic signal amplification in conjunction with AuNPs leading to excellent electrochemical performance. Thus Ti3C2Tx/Au hybrid nanostructure can be used as an electrode platform for the electrochemical analysis of various targets. We used screen-printed electrodes modified with the Ti3C2Tx/Au electrode and functionalized with different biorecognition elements to detect and quantify an antibiotic, ampicillin (AMP), and a mycotoxin, fumonisin B1 (FB1). The ultralow limits of detection of 2.284 pM and 1.617 pg.mL-1, which we achieved respectively for AMP and FB1 are far lower than their corresponding maximum residue limits of 2.8 nM in milk and 2 to 4 mg kg-1 in corn products for human consumption set by the United States Food and Drug Administration. Additionally, the linear range of detection and quantification of AMP and FB1 were, respectively, 10 pM to 500 nM and 10 pg mL-1 to 1 µg mL-1. The unique structure and excellent electrochemical performance of Ti3C2Tx/Au nanocomposite suggest that it is highly suitable for anchoring biorecognition entities such as antibodies and oligonucleotides for monitoring various deleterious contaminants in agri-food products.


Asunto(s)
Ampicilina , Técnicas Electroquímicas , Fumonisinas , Oro , Límite de Detección , Nanopartículas del Metal , Titanio , Fumonisinas/análisis , Oro/química , Ampicilina/análisis , Ampicilina/química , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Titanio/química , Técnicas Biosensibles/métodos , Leche/química , Antibacterianos/análisis , Electrodos , Contaminación de Alimentos/análisis , Animales
9.
Molecules ; 29(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731508

RESUMEN

This study delves into the physicochemical properties of inorganic hydroxyapatite (HAp) and hybrid hydroxyapatite-chitosan (HAp-CTS) granules, also gold-enriched, which can be used as aggregates in biomicroconcrete-type materials. The impact of granules' surface modifications with citric acid (CA) or polyethylene glycol (PEG) was assessed. Citric acid modification induced increased specific surface area and porosity in inorganic granules, contrasting with reduced parameters in hybrid granules. PEG modification resulted in a slight increase in specific surface area for inorganic granules and a substantial rise for hybrid granules with gold nanoparticles. Varied effects on open porosity were observed based on granule type. Microstructural analysis revealed increased roughness for inorganic granules post CA modification, while hybrid granules exhibited smoother surfaces. Novel biomicroconcretes, based on α-tricalcium phosphate (α-TCP) calcium phosphate cement and developed granules as aggregates within, were evaluated for compressive strength. Compressive strength assessments showcased significant enhancement with PEG modification, emphasizing its positive impact. Citric acid modification demonstrated variable effects, depending on granule composition. The incorporation of gold nanoparticles further enriched the multifaceted approach to enhancing calcium phosphate-based biomaterials for potential biomedical applications. This study demonstrates the pivotal role of surface modifications in tailoring the physicochemical properties of granules, paving the way for advanced biomicroconcretes with improved compressive strength for diverse biomedical applications.


Asunto(s)
Ácido Cítrico , Durapatita , Polietilenglicoles , Ácido Cítrico/química , Durapatita/química , Polietilenglicoles/química , Oro/química , Materiales Biocompatibles/química , Ensayo de Materiales , Quitosano/química , Porosidad , Nanopartículas del Metal/química , Fenómenos Químicos , Fuerza Compresiva , Propiedades de Superficie
10.
Int J Mol Sci ; 25(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38732235

RESUMEN

The formulation of novel delivery protocols for the targeted delivery of genes into hepatocytes by receptor mediation is important for the treatment of liver-specific disorders, including cancer. Non-viral delivery methods have been extensively studied for gene therapy. Gold nanoparticles (AuNPs) have gained attention in nanomedicine due to their biocompatibility. In this study, AuNPs were synthesized and coated with polymers: chitosan (CS), and polyethylene glycol (PEG). The targeting moiety, lactobionic acid (LA), was added for hepatocyte-specific delivery. Physicochemical characterization revealed that all nano-formulations were spherical and monodispersed, with hydrodynamic sizes between 70 and 250 nm. Nanocomplexes with pCMV-Luc DNA (pDNA) confirmed that the NPs could bind, compact, and protect the pDNA from nuclease degradation. Cytotoxicity studies revealed that the AuNPs were well tolerated (cell viabilities > 70%) in human hepatocellular carcinoma (HepG2), embryonic kidney (HEK293), and colorectal adenocarcinoma (Caco-2) cells, with enhanced transgene activity in all cells. The inclusion of LA in the NP formulation was notable in the HepG2 cells, which overexpress the asialoglycoprotein receptor on their cell surface. A five-fold increase in luciferase gene expression was evident for the LA-targeted AuNPs compared to the non-targeted AuNPs. These AuNPs have shown potential as safe and suitable targeted delivery vehicles for liver-directed gene therapy.


Asunto(s)
Quitosano , Técnicas de Transferencia de Gen , Oro , Neoplasias Hepáticas , Nanopartículas del Metal , Humanos , Oro/química , Nanopartículas del Metal/química , Células Hep G2 , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Quitosano/química , Células HEK293 , Receptor de Asialoglicoproteína/metabolismo , Receptor de Asialoglicoproteína/genética , Células CACO-2 , Luciferasas/genética , Luciferasas/metabolismo , Polietilenglicoles/química , Plásmidos/genética , Disacáridos/química , Terapia Genética/métodos , Polímeros/química , Supervivencia Celular/efectos de los fármacos
11.
Int J Mol Sci ; 25(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732264

RESUMEN

Pyridoxal and pyridoxal 5'-phosphate are aldehyde forms of B6 vitamin that can easily be transformed into each other in the living organism. The presence of a phosphate group, however, provides the related compounds (e.g., hydrazones) with better solubility in water. In addition, the phosphate group may sometimes act as a binding center for metal ions. In particular, a phosphate group can be a strong ligand for a gold(III) ion, which is of interest for researchers for the anti-tumor and antimicrobial potential of gold(III). This paper aims to answer whether the phosphate group is involved in the complex formation between gold(III) and hydrazones derived from pyridoxal 5'-phosphate. The answer is negative, since the comparison of the stability constants determined for the gold(III) complexes with pyridoxal- and pyridoxal 5'-phosphate-derived hydrazones showed a negligible difference. In addition, quantum chemical calculations confirmed that the preferential coordination of two series of phosphorylated and non-phosphorylated hydrazones to gold(III) ion is similar. The preferential protonation modes for the gold(III) complexes were also determined using experimental and calculated data.


Asunto(s)
Oro , Hidrazonas , Piridoxal , Hidrazonas/química , Oro/química , Piridoxal/química , Fosfato de Piridoxal/química , Complejos de Coordinación/química , Espectrofotometría Ultravioleta , Estructura Molecular
12.
Sci Rep ; 14(1): 10618, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724594

RESUMEN

Various kinds of pets have been known to contract the ectoparasite Sarcoptes scabiei. Current acaricides are becoming less effective because of the resistance developed by the mite besides their adverse effects on the general activity and reproductive performance of domestic pets. For this reason, the present study aims to discover a novel and safe approach using silver and gold nanoparticles to fight Sarcoptic mange in rabbits as well as to explain their mechanism of action. 15 pet rabbits with clinical signs of Sarcoptic mange that were confirmed by the microscopic examination were used in our study. All rabbits used in this study were assessed positive for the presence of different developing stages of S. scabiei. Three groups of rabbits (n = 5) were used as follows: group (1) didn't receive any treatment, and group (2 and 3) was treated with either AgNPs or GNPs, respectively. Both nanoparticles were applied daily on the affected skin areas via a dressing and injected subcutaneously once a week for 2 weeks at a dose of 0.5 mg/kg bwt. Our results revealed that all rabbits were severely infested and took a mean score = 3. The skin lesions in rabbits that didn't receive any treatments progressed extensively and took a mean score = of 4. On the other hand, all nanoparticle-treated groups displayed marked improvement in the skin lesion and took an average score of 0-1. All NPs treated groups showed remarkable improvement in the microscopic pictures along with mild iNOS, TNF-α, and Cox-2 expression. Both nanoparticles could downregulate the m-RNA levels of IL-6 and IFγ and upregulate IL-10 and TGF-1ß genes to promote skin healing. Dressing rabbits with both NPs didn't affect either liver and kidney biomarkers or serum Ig levels indicating their safety. Our residual analysis detected AgNPs in the liver of rabbits but did not detect any residues of GNPs in such organs. We recommend using GNPs as an alternative acaricide to fight rabbit mange.


Asunto(s)
Oro , Nanopartículas del Metal , Sarcoptes scabiei , Escabiosis , Plata , Animales , Conejos , Nanopartículas del Metal/química , Nanopartículas del Metal/administración & dosificación , Oro/química , Escabiosis/tratamiento farmacológico , Escabiosis/parasitología , Plata/química , Sarcoptes scabiei/efectos de los fármacos , Piel/efectos de los fármacos , Piel/parasitología , Piel/patología , Piel/metabolismo
13.
Transl Vis Sci Technol ; 13(5): 5, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38713474

RESUMEN

Purpose: The blood-retinal barrier (BRB) restricts the delivery of intravenous therapeutics to the retina, necessitating innovative approaches for treating retinal disorders. This study sought to explore the potential of focused ultrasound (FUS) to non-invasively deliver intravenously administered gold nanoparticles (AuNPs) across the BRB. FUS-BRB modulation can offer a novel method for targeted retinal therapy. Methods: AuNPs of different sizes and shapes were characterized, and FUS parameters were optimized to permeate the BRB without causing retinal damage in a rodent model. The delivery of 70-kDa dextran and AuNPs to the retinal ganglion cell (RGC) layer was visualized using confocal and two-photon microscopy, respectively. Histological and statistical analyses were conducted to assess the effectiveness and safety of the procedure. Results: FUS-BRB modulation resulted in the delivery of dextran and AuNPs to the RGC and inner nuclear layer. Smaller AuNPs reached the retinal layers to a greater extent than larger ones. The delivery of dextran and AuNPs across the BRB with FUS was achieved without significant retinal damage. Conclusions: This investigation provides the first evidence, to our knowledge, of FUS-mediated AuNP delivery across the BRB, establishing a foundation for a targeted and non-invasive approach to retinal treatment. The results contribute to developing promising non-invasive therapeutic strategies in ophthalmology to treat retinal diseases. Translational Relevance: Modifying the BRB with ultrasound offers a targeted and non-invasive delivery strategy of intravenous therapeutics to the retina.


Asunto(s)
Barrera Hematorretinal , Oro , Nanopartículas del Metal , Células Ganglionares de la Retina , Animales , Oro/química , Oro/administración & dosificación , Células Ganglionares de la Retina/citología , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Dextranos/administración & dosificación , Dextranos/química , Sistemas de Liberación de Medicamentos/métodos , Ratas , Microscopía Confocal/métodos , Masculino
14.
Anal Chim Acta ; 1307: 342626, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719405

RESUMEN

BACKGROUND: C-reactive protein (CRP) represents an early clinical biomarker that indicates the presence of inflammatory or infectious conditions in the human body. Today's procedures approved by the Food and Drug Administration (FDA) imply expensive equipment and highly trained personnel to perform the test. Therefore, a new diagnostic method with high detection efficiency and less cost is urgently needed for delivering rapid and timely results in point-of-care (POC) service. RESULTS: Herein, we propose a new, equipment-free, and portable sensing method for the future POC detection of CRP based on the Tyndall effect (TE). In our study, aptamer-conjugated citrate-stabilized gold nanoparticles (apta-AuNPs) are exploited as the sensing platform. The apta-AuNPs' interaction with CRP in a saline environment leads to their aggregation, thus enhancing the scattering of light when the solution is exposed to a 640 nm pointer laser line. Firstly, the enhancement of the scattering light as a function of increasing concentration of CRP in solution is measured spectroscopically using a typical 90-degree angle spectrofluorometer and then the measurements are compared to the classic colorimetric detection using an UV-Vis spectrophotometer. Finally, to achieve high portability and accessibility, we demonstrate that the measurement of CRP concentration can be performed with similar accuracy but in a more direct and inexpensive way by using a laser pointer pen as the excitation source and a camera of a low-budget smartphone as a quantitative reader instead of most expensive spectrofluorometer. SIGNIFICANCE: The portable TE-based assay exhibits a wide linear dynamic range (1-60 µg/mL) for the detection of CRP with a limit of detection (LOD) of 92 ng/mL The proposed method is capable to integrate both standard and high-sensitivity CRP analysis in a single procedure with increased sensitivity and prompt delivery of analysis results. Moreover, the sensing procedure is significantly faster than the FDA approved ones with a detection time of only 10 min. Finally, as a proof-of-concept, our findings demonstrate excellent recovery for CRP detection in spiked and diluted urine samples, highlighting the strong potential of this sensing method for POC applications.


Asunto(s)
Aptámeros de Nucleótidos , Proteína C-Reactiva , Oro , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Proteína C-Reactiva/análisis , Aptámeros de Nucleótidos/química , Humanos , Técnicas Biosensibles , Límite de Detección , Colorimetría , Sistemas de Atención de Punto
15.
Anal Chim Acta ; 1307: 342631, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719408

RESUMEN

BACKGROUND: Simultaneous detection of food contaminants is crucial in addressing the collective health hazards arising from the presence of multiple contaminants. However, traditional multi-competitive surface-enhanced Raman scattering (SERS) aptasensors face difficulties in achieving simultaneous accurate detection of multiple target substances due to the uncontrollable SERS "hot spots". In this study, using chloramphenicol (CAP) and estradiol (E2) as two target substances, we introduced a novel approach that combines machine learning methods with a dual SERS aptasensor, enabling simultaneous high-sensitivity and accurate detection of both target substances. RESULTS: The strategy effectively minimizes the interference from characteristic Raman peaks commonly encountered in traditional multi-competitive SERS aptasensors. For this sensing system, the Au@4-MBA@Ag nanoparticles modified with sulfhydryl (SH)-CAP aptamer and Au@DTNB@Ag NPs modified with sulfhydryl (SH)-E2 aptamer were used as signal probes. Additionally, Fe3O4@Au nanoflowers integrated with SH-CAP aptamer complementary DNA and SH-E2 aptamer complementary DNA were used as capture probes, respectively. When compared to linear regression random forest, and support vector regression (SVR) models, the proposed artificial neural network (ANN) model exhibited superior precision, demonstrating R2 values of 0.963, 0.976, 0.991, and 0.970 for the training set, test set, validation set, and entire dataset, respectively. Validation with ten spectral groups reported an average error of 244 µg L-1. SIGNIFICANCE: The essence of our study lies in its capacity to address a persistent challenge encountered by traditional multiple competitive SERS aptasensors - the interference generated by uncontrollable SERS "hot spots" that hinders simultaneous quantification. The accuracy of the predictive model for simultaneous detection of two target substances was significantly improved using machine learning tools. This innovative technique offers promising avenues for the accurate and high-sensitive simultaneous detection of multiple food and environmental contaminants.


Asunto(s)
Aptámeros de Nucleótidos , Oro , Aprendizaje Automático , Nanopartículas del Metal , Plata , Espectrometría Raman , Aptámeros de Nucleótidos/química , Plata/química , Oro/química , Nanopartículas del Metal/química , Cloranfenicol/análisis , Estradiol/análisis , Técnicas Biosensibles/métodos , Contaminación de Alimentos/análisis , Límite de Detección
16.
Anal Chim Acta ; 1307: 342630, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719407

RESUMEN

BACKGROUND: MicroRNAs, as oncogenes or tumor suppressors, enable to up or down-regulate gene expression during tumorigenesis. The detection of miRNAs with high sensitivity is crucial for the early diagnosis of cancer. Inspired by biological ion channels, artificial nanochannels are considered as an excellent biosensing platform with relatively high sensitivity and stability. The current nanochannel biosensors are mainly based on homogeneous membranes, and their monotonous structure and functionality limit its further development. Therefore, it is necessary to develop a heterostructured nanochannel with high ionic current rectification to achieve highly sensitive miRNA detection. RESULTS: In this work, an asymmetric heterostructured nanochannel constructed from dendrimer-gold nanoparticles network and anodic aluminum oxide are designed through an interfacial super-assembly method, which can regulate ion transport and achieve sensitive detection of target miRNA. The symmetry breaking is demonstrated to endow the heterostructured nanochannels with an outstanding ionic current rectification performance. Arising from the change of surface charges in the nanochannels triggered by DNA cascade signal amplification in solution, the proposed heterogeneous nanochannels exhibits excellent DNA-regulated ionic current response. Relying on the nucleic acid's hybridization and configuration transformation, the target miRNA-122 associated with liver cancer can be indirectly quantified with a detection limit of 1 fM and a wide dynamic range from 1 fM to 10 pM. The correlation fitting coefficient R2 of the calibration curve can reach to 0.996. The experimental results show that the method has a good recovery rate (98%-105 %) in synthetic samples. SIGNIFICANCE: This study reveals how the surface charge density of nanochannels regulate the ionic current response in the heterostructured nanochannels. The designed heterogeneous nanochannels not only possess high ionic current rectification property, but also enable to induce superior transport performance by the variation of surface chemistry. The proposed biosensor is promising for applications in early diagnosis of cancers, life science research, and single-entity electrochemical detection.


Asunto(s)
Óxido de Aluminio , Técnicas Biosensibles , Dendrímeros , Oro , MicroARNs , MicroARNs/análisis , Oro/química , Dendrímeros/química , Óxido de Aluminio/química , Humanos , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Límite de Detección , Técnicas Electroquímicas/métodos , Nanoestructuras/química
17.
Mikrochim Acta ; 191(6): 321, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727732

RESUMEN

The rapid and precise monitoring of peripheral blood miRNA levels holds paramount importance for disease diagnosis and treatment monitoring. In this study, we propose an innovative research strategy that combines the catalytic hairpin assembly reaction with SERS signal congregation and enhancement. This combination can significantly enhance the stability of SERS detection, enabling stable and efficient detection of miRNA. Specifically, our paper-based SERS detection platform incorporates a streptavidin-modified substrate, biotin-labeled catalytic hairpin assembly reaction probes, 4-ATP, and primer-co-modified gold nanoparticles. In the presence of miRNA, the 4-ATP and primer-co-modified gold nanoparticles can specifically recognize the miRNA and interact with the biotin-labeled CHA probes to initiate an interfacial catalytic hairpin assembly reaction. This enzyme-free high-efficiency catalytic process can accumulate a large amount of biotin on the gold nanoparticles, which then bind to the streptavidin on the substrate with the assistance of the driving liquid, forming red gold nanoparticle stripes. These provide a multitude of hotspots for SERS, enabling enhanced signal detection. This innovative design achieves a low detection limit of 3.47 fM while maintaining excellent stability and repeatability. This conceptually innovative detection platform offers new technological possibilities and solutions for clinical miRNA detection.


Asunto(s)
Biotina , Oro , Límite de Detección , Nanopartículas del Metal , MicroARNs , Espectrometría Raman , MicroARNs/sangre , MicroARNs/análisis , Nanopartículas del Metal/química , Oro/química , Espectrometría Raman/métodos , Biotina/química , Humanos , Catálisis , Estreptavidina/química
18.
Sci Rep ; 14(1): 10450, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714678

RESUMEN

We present an advanced electrochemical immunosensor designed to detect the vascular endothelial growth factor (VEGF) precisely. The sensor is constructed on a modified porous gold electrode through a fabrication process involving the deposition of silver and gold on an FTO substrate. Employing thermal annealing and a de-alloying process, the silver is eliminated from the electrode, producing a reproducible porous gold substrate. Utilizing a well-defined protocol, we immobilize the heavy-chain (VHH) antibody against VEGF on the gold substrate, facilitating VEGF detection through various electrochemical methods. Remarkably, this immunosensor performs well, featuring an impressive detection limit of 0.05 pg/mL and an extensive linear range from 0.1 pg/mL to 0.1 µg/mL. This emphasizes it's to measure biomarkers across a wide concentration spectrum precisely. The robust fabrication methodology in this research underscores its potential for widespread application, offering enhanced precision, reproducibility, and remarkable detection capabilities for the developed immunosensor.


Asunto(s)
Biomarcadores de Tumor , Técnicas Biosensibles , Oro , Factor A de Crecimiento Endotelial Vascular , Oro/química , Humanos , Biomarcadores de Tumor/análisis , Factor A de Crecimiento Endotelial Vascular/análisis , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Nanopartículas del Metal/química , Nanoestructuras/química , Técnicas Electroquímicas/métodos , Límite de Detección , Detección Precoz del Cáncer/métodos , Reproducibilidad de los Resultados , Neoplasias/diagnóstico
19.
Mikrochim Acta ; 191(6): 299, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709371

RESUMEN

Gold nanoclusters are a smart platform for sensing potassium ions (K+). They have been synthesized using bovine serum albumin (BSA) and valinomycin (Val) to protect and cap the nanoclusters. The nanoclusters (Val-AuNCs) produced have a red emission at 616 nm under excitation with 470 nm. In the presence of K+, the valinomycin polar groups switch to the molecule's interior by complexing with K+, forming a bracelet structure, and being surrounded by the hydrophobic exterior conformation. This structure allows a proposed fluorometric method for detecting K+ by switching between the Val-AuNCs' hydrophilicity and hydrophobicity, which induces the aggregation of gold nanoclusters. As a result, significant quenching is seen in fluorescence after adding K+. The quenching in fluorescence in the presence of K+ is attributed to the aggregation mechanism. This sensing technique provides a highly precise and selective sensing method for K+ in the range 0.78 to 8 µM with LOD equal to 233 nM. The selectivity of Val-AuNCs toward K+ ions was investigated compared to other ions. Furthermore, the Val-AuNCs have novel possibilities as favorable sensor candidates for various imaging applications. Our detection technique was validated by determining K+ ions in postmortem vitreous humor samples, which yielded promising results.


Asunto(s)
Colorantes Fluorescentes , Oro , Nanopartículas del Metal , Potasio , Albúmina Sérica Bovina , Valinomicina , Oro/química , Valinomicina/química , Potasio/análisis , Potasio/química , Nanopartículas del Metal/química , Albúmina Sérica Bovina/química , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Límite de Detección , Animales , Interacciones Hidrofóbicas e Hidrofílicas , Bovinos
20.
Mikrochim Acta ; 191(6): 298, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709403

RESUMEN

As a real-time fluid biopsy method, the detection of circulating tumor cells (CTCs) provides important information for the early diagnosis, precise treatment, and prognosis of cancer. However, the low density of CTCs in the peripheral blood hampers their capture and detection with high sensitivity and selectivity using currently available methods. Hence, we designed a sandwich-type electrochemical aptasensor that utilizes holothurian-shaped AuPd nanoparticles (AuPd HSs), tetrahedral DNA nanostructures (TDNs), and CuPdPt nanowire networks (NWs) interwoven with a graphdiyne (GDY) sheet for ultrasensitive non-destructive detection of MCF-7 breast cancer cells. CuPdPt NW-GDY effectively enhanced the electron transfer rate and coupled with the loaded TDNs. The TDNs could capture MCF-7 cells with precision and firmness, and the resulting composite complex was combined with AuPd HSs to form a sandwich-type structure. This novel aptasensor showed a linear range between 10 and 106 cells mL-1 and an ultralow detection limit of 7 cells mL-1. The specificity, stability, and repeatability of the measurements were successfully verified. Moreover, we used benzonase nuclease to achieve non-destructive recovery of cells for further clinical studies. According to the results, our aptasensor was more sensitive measuring the number of CTCs than other approaches because of the employment of TDNs, CuPdPt NW-GDY, and AuPd HSs. We designed a reliable sensor system for the detection of CTCs in the peripheral blood, which could serve as a new approach for cancer diagnosis at an early stage.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , ADN , Técnicas Electroquímicas , Oro , Límite de Detección , Nanopartículas del Metal , Células Neoplásicas Circulantes , Paladio , Células Neoplásicas Circulantes/patología , Humanos , Células MCF-7 , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Aptámeros de Nucleótidos/química , Oro/química , ADN/química , Técnicas Biosensibles/métodos , Paladio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA